Reliability Tools
Currently, industrial organizations that use SAP-PM as a maintenance management system face the inevitable challenge of migrating to the SAP S/4 Hana version. However, they risk missing the opportunity to leverage this significant investment as a true path of transformation and improvement of their maintenance practices. This path should lead to the development of a Physical Asset Management System that ensures the reliability of their assets and processes.
In the Diagnostic Evaluations of Asset Management carried out at the beginning of each development and implementation process of Physical Asset Management Systems according to the International Standard ISO 55001, in local and international industrial organizations of all types and sizes, we always detect the underutilization of the maintenance management system in use, and invariably identify the same deficiencies in its application.
The origin of this underutilization is undoubtedly multifactorial. It can originate from an underestimation of the necessary investment in time, resources, and money for the implementation of an application like SAP-PM, or from a lack of training or knowledge of the maintenance, engineering, and reliability resources in the new capabilities that open up with the implementation of this tool. This leads to the implementation being ultimately restricted to essential aspects, and not fully developing its potential. Organizations continue to be immersed in the same maintenance practices.
The maintenance and reliability engineering staff now face the challenge that the migration to SAP-PM S/4 Hana does not fall into a new underutilization. They must ensure that the migration constitutes the foundation for developing Asset Management in accordance with the requirements of the ISO 55001 Standard.
Through our coaching, Maintenance and Reliability Engineering managers will walk step by step through the implementation process of the PM module, and at each step, they will have the necessary recommendations to ensure that the migration project is successful, and above all, transformative. Ensuring that the vital function of the new application is to contribute to the competitiveness of their business.
Maintenance Concept
The traditional objective of maintenance is to ensure maximum availability of machines and equipment to generate the required products or services, in quality and timeliness.
Modern maintenance strategies consider that a company’s physical assets must enable the maximization of benefits by addressing the business as a whole.
RCM2 is a process used to determine what must be done to ensure that any physical asset continues to do what its users want it to do in its operational context.
RCM2 complies with the SAE JA1011 standard “Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes.” The standard, published in August 1999, is a document that establishes the criteria a process must meet when applied to the maintenance of a particular asset or system to be considered “Reliability-Centered Maintenance.”
As with any process, RCM2 is structured and systematic and is based on the formulation of the following questions to define the most appropriate maintenance strategy for each physical asset in an industrial plant:
•What are the functions and performance parameters associated with the asset in its current operational context?
•How does it fail to fulfill those functions?
•What is the cause of each functional failure?
•What happens when each failure occurs?
•In what way is each failure significant?
•What can be done to prevent or predict each failure?
•What should be done if no suitable proactive task can be found?
RCM2 is a working tool that must be developed by an interdisciplinary team and aims to define the most appropriate maintenance actions, taking into account repair and prevention costs, the costs generated by production, quality, and customer service losses, and the consequences for safety and the environment.
Using a common language and a simple methodology, supported by a decision diagram, the RCM2 working group manages to determine the maintenance actions to follow:
•WHEN TO PERFORM PREDICTIVE MAINTENANCE?
•WHEN TO PERFORM PREVENTIVE MAINTENANCE?
•WHEN AND WHERE TO APPLY DETECTIVE MAINTENANCE?
•WITH WHAT FREQUENCY SHOULD INTERVENTIONS BE PERFORMED?
•WHEN IS CORRECTIVE MAINTENANCE MOST RECOMMENDED?
•WHEN IS REDESIGN NECESSARY?
•WHO SHOULD PERFORM EACH TASK?
Results obtained with the application of RCM2:
•Immediate increase in the availability and reliability of machines and equipment.
•Greater safety and environmental integrity.
•Greater operational effectiveness (production, product quality, and customer service).
•Better utilization of all productive resources.
•Greater cost-effectiveness of maintenance.
•Longer useful life of costly components, achieving better and longer preservation of physical assets.
•A global database.
•Teamwork and motivation among different areas towards the common objectives of the company.
RCM2 IS NOT COMPUTER SOFTWARE.
It is a powerful tool for defining ACTION POLICIES.
STRUCTURED FOR EASY TEACHING, LEARNING, AND IMPLEMENTATION.
MTA is a simple task identification methodology used to quickly and with low resource investment develop a reliability program for assets.
The purpose of MTA is to:
•Validate existing maintenance programs.
•Assign causes to previously unidentified failure modes.
•Optimize existing maintenance activities (deactivating or eliminating tasks that do not relate to reasonably feasible failure modes and adjusting task frequencies).
•Document the knowledge acquired by personnel.
MTA provides an alternative to the well-known RCM2-Reliability Centered Maintenance methodology for those less critical assets, resulting in a less resource-intensive process.
MTA leverages and enhances the historical knowledge of asset reliability and performance. This knowledge can come from existing reliability programs, manufacturer recommendations, and the experience of workers (operations, engineers, sales, etc.).
MTA will allow the Analysis Group to:
•Identify the Assets to Analyze.
•Identify the ways in which each Asset can fail.
•Recommend strategies to prevent or mitigate the failure
RCA*dar is a systematic and structured problem-solving tool that provides solutions through the formation of an Analysis Group, with the participation and input of those involved in the problem. Its scope is broad and can be applied in various fields such as industry, medicine, administrative processes, and transportation.
In the context of continuous improvement, the application of the RCA*dar Process allows for effectively defining a problem, analyzing it, and finding cost-effective, simple, creative, and definitive solutions.
Unlike existing techniques in the market, the RCA*dar methodology not only solves problems once they have already occurred (Reactive) but also allows studying causes that have not yet occurred but have a reasonable probability of happening in the future (Proactive).
Methodology
RCA*dar is applied through a succession of consecutive steps:
•Define
•Analyze
•Resolve
••Proactive cause analysis
How RCA*dar is implemented
By working participatively in analysis groups formed by members trained in the methodology, led by a Facilitator properly prepared to conduct the Process.
Direct results
•Detection and resolution of problems
•Opportunity for improvement points
•Improves process reliability
•Systematic problem-solving
Other benefits
•Greater involvement and motivation of staff
•Generates a common language
ECO (Equipment Condition Optimization - Optimización de la Condición de los Equipos) es una técnica, desarrollada por Ellmann, Sueiro y Asociados, sobre la base de los conceptos de TPM y RCM, que permite mejorar la capacidad instalada y recuperar las funciones de los equipos en su óptimo nivel de prestación. El deterioro continuo que suelen sufrir los equipos por
un lógico desgaste a través del tiempo sumado a una operación o mantenimiento inadecuados, los llevan a condiciones de funcionamiento que no satisfacen las “necesidades del usuario” (por reducción de la capacidad efectiva).
No tener en cuenta esta situación puede conducir a tomar decisiones equivocadas en términos de inversión en nuevos y costosos equipamientos. Para estos casos la aplicación de nuestra técnica ECO ofrece la respuesta apropiada para recuperar el nivel de operatividad y de confiabilidad de los equipos.
La técnica permite que a través de la eliminación tanto del desgaste forzado como del incremento del deterioro, se logre la recuperación de una capacidad que asegure
que “las funciones que el usuario desea” puedan ser cumplidas satisfactoriamente.
La aplicación de ECO es recomendable para equipamientos donde se requieren altos niveles de confiabilidad y que presentan un importante grado de deterioro.
La correcta aplicación de ECO permite obtener tres tipos de resultados:
1.- Que los equipos puedan satisfacer los requerimientos de los usuarios.
2 - Reducción de modos de fallo probables.
3.- Reducción de la frecuencia de tareas de mantenimiento.
La técnica de ECO, además de favorecer la integración y el trabajo en equipo del personal
responsable de la operación de las máquinas (producción, mantenimiento, ingeniería, etc.), permite lo obtención rápida de resultados que se reflejan directamente en:
- - Ahorro por no realización de inversiones innecesarias.
- - Reducción de los costos de mantenimiento del equipo analizado.
- - Mayor disponibilidad de la máquina.
- - Mayor confiabilidad para la operación.
In the past 10 years, the concept of Condition Based Maintenance (CBM) or Predictive Maintenance has attracted enormous attention. Indeed, new techniques have been developed and continue to be developed to predict the occurrence of a failure.
Reliability Centered Maintenance (RCM) indicates that for a maintenance task to be cost-effective, it must meet two conditions:
•It must be technically feasible, i.e., physically possible.
•It must be ‘worthwhile,’ meaning it should adequately address the consequence of the failure it aims to prevent.
Within the decision-making process, and within the framework of possible proactive maintenance strategies, condition-based maintenance is prioritized over cyclical reconditioning and, in turn, over cyclical replacement.
This is because, in the case of Condition Based Maintenance, work is done under conditions of ‘certainty’ of failure (looking for physical signals or signs that a failure is about to occur), while Preventive Tasks are based on statistical data. This means that with Condition Based Maintenance, the maximum performance of each element is achieved without sacrificing reliability, which results in maximizing the benefit for the company.
The most important challenges faced by maintenance personnel regarding Condition Based Maintenance are:
•Knowing the condition-based maintenance techniques available in the market.
•Deciding which of all the condition-based maintenance techniques is technically suitable for their equipment.
•Determining whether the required investment is worthwhile.
•Being able to decide between more than one applicable technique, which is the most convenient.
The CBM-RCM process helps resolve each of these points, starting from information on nearly a hundred predictive techniques, considering their degree of development, most frequent applications, P-F intervals (which define the inspection frequency), required skills, advantages, and disadvantages.
Once the technical feasibility of performing one or more condition-based tasks is defined, it will be necessary to verify if they are ‘worthwhile.’ In the case of safety and environmental consequences, the answer is obvious since any action that prevents workplace or environmental accidents will be worthwhile when it reduces the probability of failure to a tolerable level. But the answer will not be so easy when there are no such impacts and one must evaluate operational or non-operational consequences. In that case, more than one option will be available, and the task cost versus the cost of consequences over a period must be compared.
For this purpose, in the CBM-RCM course, participants are taught a methodology that, through a specially designed Condition Task Evaluation Sheet, allows them to calculate and compare which of the different alternatives, if more than one exists, is more cost-effective compared to the consequence of the failure it aims to prevent. This not only ensures the best decision but also provides objective evidence of the decision made
Before executing a reliability improvement project, a criticality analysis of the existing equipment in the plant should be carried out.
Since resources are scarce, the criticality analysis allows for a comparative evaluation of the equipment, so that improvement efforts can be focused on those that truly matter, obtaining maximum return on investment.
This analysis is performed by a multidisciplinary Work Team, defining the variables to be analyzed and a relative weighting that allows for objective comparison of the consequences of failure in each piece of equipment.
Modern spare parts warehouses today maintain a wide variety of items, from low-cost consumables used by the thousands per year to critical spares costing tens or hundreds of thousands of dollars that may never be used throughout the entire life of the plant.
Up to 50% of the inventory value may consist of spares used at a rate of one per year or less; spares valued between 10% and 30% of the inventory may sit on a shelf in the warehouse for the entire life of the plant. From a financial perspective, these spares perhaps should never have been purchased; however, if they had not been available when required, the company could have suffered severe economic consequences…
RCS (Reliability Centered Spares) is a SYSTEMATIC and STRUCTURED process derived directly from the RCM (Reliability Centered Maintenance) philosophy, providing rational criteria for optimizing inventories of critical spares.
RCS is not based on supplier recommendations or subjective engineering judgment but on the systematic analysis of the CONSEQUENCES of a shortage (i.e., what happens if a spare is not available when required?).
The vast majority of shortages have ECONOMIC consequences: not having the spare when necessary costs money, whether due to loss of production, sales, fines, loss of product quality, etc.
In these cases, RCS uses the concept of LIFE CYCLE COSTING to answer the key question: Is it worth buying a particular spare? And if so, how many should be purchased?
RCS selects the number of spares that MINIMIZES THE TOTAL COST FOR THE COMPANY. These costs include the purchase costs of the spares, storage, inventory maintenance, and financial costs, as well as the costs incurred if the spare is not available when required: unavailability costs (how much does each hour of waiting for the spare cost?), emergency purchases, emergency freight, etc.
The most immediate and obvious benefit of applying RCS to critical spares is that stock levels are directly based on maintenance and operations requirements. Since the method is based on the analysis of CONSEQUENCES, the requirements are met with the optimal investment in spares, commonly saving between 30% and 60% of inventory value while meeting production, safety, and environmental requirements.
The benefits of applying RCS are:
•Inventory reduction
•Increased equipment availability
•Increased plant availability
•Elimination of ‘hidden warehouses’
•Better knowledge of necessary resources
•Improved communication and understanding between engineering, operations, and procurement
•Rational justification of decisions
•Better understanding of the requirements of inventory and maintenance systems
•Creates a clearer and more beneficial relationship with suppliers
•Greater cost-effectiveness for the entire company
Una organización cuenta con RECURSOS esenciales que son los “pilares” en los que se sustentan sus acciones y que, a modo de síntesis, podemos agruparlos en tres clases diferentes:
- Recursos FINANCIEROS
- Recursos HUMANOS
- Activos FÍSICOS
La gestión de cada uno de estos elementos requiere de un detallado análisis para determinar objetivos específicos y definir los recursos necesarios para alcanzarlos. El objetivo de cualquier organización con fines de lucro es la mejora de su COMPETITIVIDAD para alcanzar la
SUSTENTABILIDAD de su negocio y mantenerse vigente en su mercado.
Todas y cada una de las funciones de la organización existen y se desarrollan porque le aportan a ésta resultados orientados a su negocio. El MANTENIMIENTO de los activos físicos de la compañía puede impactar fuertemente en estos resultados a través de la performance y la extensión de la vida útil de los equipamientos.
Por lo tanto el objetivo primordial del mantenimiento de los activos físicos debe ser el de asegurar la competitividad de la empresa a través de una gestión eficiente para la administración de estos activos.
Visto de esta manera, la gestión del MANTENIMIENTO es una función vital para alcanzar la mejor competitividad de una compañía y esta función debe ser entendida como un verdadero proceso en el que intervienen diferentes aspectos:
- Las Estrategias del Mantenimiento (requerimientos de mantenimiento)
- Los Recursos Humanos (las habilidades y capacidades de los operadores y gerentes)
- La administración de los Servicios, Repuestos y Herramientas
- Los Sistemas
Así entendida la gestión del mantenimiento, se pueden alcanzar los beneficios buscados a través de:
Mayor CONFIABILIDAD DE OPERACIÓN
Incrementos en la DISPONIBILIDAD DE PLANTA
Mayor SEGURIDAD
Mejor PROTECCIÓN DEL MEDIO AMBIENTE
Mayor CALIDAD DE PRODUCTO
Mejoras en el SERVICIO AL CLIENTE (externo e interno)
Mejor COSTO-EFICACIA
Mayor CONSERVACIÓN DEL VALOR PATRIMONIAL DE ACTIVOS FÍSICOS
Como punto de partida para una Organización Integral de Mantenimiento, Ellmann Sueiro y Asociados propone su herramienta “DIAGNÓSTICO”
El Diagnóstico es un proceso analítico estructurado que permite conocer y comprender la situación actual del área de mantenimiento en la organización, descubrir y describir sus problemas y áreas de oportunidades.
El Diagnóstico está dirigido a evaluar la efectividad de cada uno de los procesos que se desarrollan en el área de Mantenimiento para cumplir con la administración de los activos físicos: Estrategias, Recursos Humanos, Recursos Materiales, Servicios de Terceros y Sistema de Gestión.
Con la información recogida en el proceso de “Diagnóstico”, se tendrán los datos necesarios para elaborar un plan de acción orientado hacia las mejores prácticas de mantenimiento mundial, apoyándose en una visión clara de fortalezas y debilidades, oportunidades y amenazas de la organización.